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Community-based Question Answering :

o Community-based Question Answering (CQA)
o sharing knowledge and experience
o accessible to everyone
o gaining popularity

o Examples:
o Stack Overflow \\\
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What is Question Routing?

Question Raiser asked
a question.
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What is Question Routing?

o
Answer 1 [

One Question Answerer
answered the question.
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What is Question Routing?

Answer 1
Answer 2
Answer 3
Answer 4 Multiple Question Answerers

answered the question.
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What is Question Routing?

Answer 1
Answer 2
Answer 3
Answer 4 Question Raiser select the

answer that he/she is most
satisfied with as the
“accepted answer”!
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What is Question Routing?

Answer 1
Answer 2
Answer 3
Answer 4 Challenge:

Collecting answers can be
time consuming.
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What is Question Routing?

Answer 1
Answer 2
Answer 3
Answer 4 Question Routing!
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Motivation — Existing Algorithms

Answer 1

Answer 2
e '

Answer 3

Answer 4
4'

Previous Algorithms for Question Routing:
Recommend answerers based on Question.
Query: {question content} - answerers

Samueli
UCLA Computer Science

||
scAl Zeyu Li, Jyun-Yu Jiang, Yizhou Sun, Wei Wang

SCALABLE ANALYTICS INSTITUTE Personalized Question Routing via Heterogeneous Network Embedding




Motivation — Limitations

o Limitations of existing QR Algorithms:

o Lack of personalization

o Prior algorithms are unable to customize recommendations to
suit user’s (diverse) characteristics.

o Lack of quantitative ranking scores

o Prior algorithms generate the rankings directly from the features
without using explicit ranking scores.

o Lack of mechanism to capture deep non-linear

semantics of questions.

o Prior algorithms interpret questions by language models and
topic models.
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Motivation — Our Algorithm

/

Answer 1

Answer 2

Answer 3

Answer 4
4'

NeRank:
Assess the “personalized authority” of answerers.

Query: {question content, question

Raiser} - answerers
Samueli
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NeRank — Overview

o Objectives

o Personalization: Question answerers are
preferable to share similar “background” to that
of the question raiser.

o Expertise: The recommended answerers are
knowledgeable in the question domain.

o Proposed Solutions

o To model user similarity: Heterogeneous
Information Network (HIN) embedding. [pcs, kbp2017]

o To capture user expertise: Convolutional
recommender system.
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NeRank — Pipeline
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Two Major Components:

(1) LSTM-equipped Metapath-based HIN Embedding with
Negative Sampling

(2) Convolutional Recommender System
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NeRank — HIN Embedding

o CQA Network

o Three types of entities: Question Raiser,
Question Content, Question Answerer.

o Two types of relationships: “Raises a question”,
“Answers a question”.

Question raisers ———» 4 ) I3

“Raises a question”

relationship
Questions —»  qi Q- qs
“Answers a question” M \
relationship
Answerers > g, as as ar
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NeRank — HIN Embedding

o CQA Network
o Metapath-based Walk

o Generate walks on the network following the

pattern of a “metapath”.
o E.G. a walk of metapath “AQRQA”

-(7 (o )~ )—(o)—(A)—(a)—( )—(o ) --

o Conduct Skip-gram on the generated walks.
o Use LSTM to learn representations of questions.
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NeRank — HIN Embedding
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Two Steps for Question Content Representation:

(1) Derive the embedding of text by an LSTM.

(2) Feed the derived representation to Skip-gram for
optimization.
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NeRank — Conv. Recommender System
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Two Partial Order Constraints for Ranking:

(1) The best answerer has the highest score among all
answerers to the query.

(2) Answerers who answered a question have higher scores
than those who did not.
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NeRank — Optimization

o Embedding Loss and Ranking Loss

o For Embedding Loss:

L(D,D'|®) = Zlog(a(vn ) )+Zlog( o (vn - uc))
o For Ranking Loss:

Srank(D, D'|©)

= Z (F(vp,vq,Va) — F (v, vq,0q))

(a*,q),(a,q)€D

+ Z (F(UTaUQava) - F(U”“Uq’van))
(aaQ)eDa(an’Q)ED/

o They are alternatively optimized using Adam.
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Experiments — Settings

o Dataset:
o Two CQA websites under Stack Exchange:
Biology (Bio) and English (Eng).
o Metrics
o Mean Reciprocal Rank (MRR)
o Hit@K:
o The ground truth has the top-K scores.
o Precision@1 (Prec@1):
o Special case of Hit@K when K=1.
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Experiments — Baselines

o Baselines:

o Score: selecting the one with most accepted answers.
o NMF: Non-negative Matrix Factorization. (Gemulla et al.

2011)

o L2R: RankSVM-based QR algorithm. (Ji and Wang 2013)

Dataset Biology English
Metric | MRR | Hit@K | Prec@]l | MRR | Hit@K | Prec@1
Score 0.27 0412 0.105 0.203 | 0.379 0.065
NMF 0.375 | 0.643 0.177 | 0458 | 0.737 0.225
L2R 0.169 | 0.158 0.050 | 0.101 | 0.058 0.024
NeRank | 0.563 | 0.806 0.387 | 0.567 | 0.833 0.372
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Experiments — Effectiveness

o Effectiveness of Metapath NE and CNN.

O Comparing NeRank with three variants: Replacing HIN
embedding with DeepWalk (NeRank-DW) and LINE
(NeRank-LINE). Replacing CNN ranking scores with

average of (v, + v,) (NeRank-AVG)
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Conclusion

O We proposed NeRank, a framework for
personalized Question Routing.

o NeRank learns representations of entities in CQA
websites by HIN embedding and LSTM.

o Using embeddings, a convolutional scoring model
generates the ranking.

o Experimental results show that NeRank
outperforms the state-of-the-art QR algorithms.
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