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ABSTRACT
Click-through rate (CTR) prediction is a critical task in online adver-
tising and marketing. For this problem, existing approaches, with
shallow or deep architectures, have three major drawbacks. First,
they typically lack persuasive rationales to explain the outcomes
of the models. Unexplainable predictions and recommendations
may be difficult to validate and thus unreliable and untrustworthy.
In many applications, inappropriate suggestions may even bring
severe consequences. Second, existing approaches have poor ef-
ficiency in analyzing high-order feature interactions. Third, the
polysemy of feature interactions in different semantic subspaces is
largely ignored. In this paper, we propose InterHAt that employs
a Transformer with multi-head self-attention for feature learning.
On top of that, hierarchical attention layers are utilized for predict-
ing CTR while simultaneously providing interpretable insights of
the prediction results. InterHAt captures high-order feature inter-
actions by an efficient attentional aggregation strategy with low
computational complexity. Extensive experiments on four public
real datasets and one synthetic dataset demonstrate the effective-
ness and efficiency of InterHAt.
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1 INTRODUCTION
Click-through rate (CTR) is defined as the probability of a user click-
ing through a particular recommended item or an advertisement
on a web page. It plays a significant role in recommender systems,
such as online advertising, since it directly affects the revenue of
advertising agencies [7, 12, 13, 16, 25, 25, 30, 37, 38]. Consequently,
CTR prediction, which attempts to accurately estimate the CTR
given information describing a user-item scenario, is critical for
achieving precise recommendations and increasing good revenue
for enterprises.

The development of deep learning provides a newmachine learn-
ing paradigm that utilizes deeper neural network structure to cap-
ture more complex information from the training data. Therefore,
the architectural and computational complexity of existing CTR
prediction models has been ever increasing in order to learn the
joint effect of multiple features, i.e., high-order features (a.k.a. cross
features), and attain better prediction accuracy. Specifically, a k-th
order feature (k ∈ N) refers to a latent variable that is a k-th degree
polynomial of the raw features [4, 31]. Deep neural networks pro-
vide strong capability to capture rich high-order information due
to the large number of layers and units. For example, DeepFM [9]
and xDeepFM [19] learn high-order features by multi-layer feed-
forward neural networks (FNN) and multi-block compressed inter-
action networks (CIN).

However, the ever-growing model complexity has two draw-
backs: impaired interpretability and poor efficiency. For interpretabil-
ity, the prediction-making processes are hard to be reasonably ex-
plained since the weights and activations of the neural network
layers are usually deemed unexplainable. For example, the wide
component of Wide&Deep [4] applies cross-product transforma-
tions to feature embeddings but fails to quantify and justify its ef-
fectiveness to the actual click-through rate prediction performance.
The lack of persuasive rationales for the predictions of the models
casts shadow on their reliability and security. In many applications,
e.g., medication recommendation [20] and financial services [39],
untrustworthy and unreliable advertisements can mislead users to
click through the statistically popular but actually useless or even
harmful links which can result in serious consequences such as
economic or health losses.
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The second defect of existing approaches is the poor efficiency
since the high-order interaction feature generation by deep neural
networks involves extremely heavy matrix computations in deep
neural networks (DNN). For example, the compressed interaction
network (CIN) in xDeepFM [19] computes the (k + 1)-th order
feature matrix by an outer product layer and a fully-connected layer
which entails a cubic complexity to the embedding dimension. The
deep component in Wide&Deep has a number of fully-connected
layers each of which involves a quadratic number of multiplications.

In real applications, the efficiency issue is prevalent and critical.
Advertising agencies prefer prompt click recommendation provi-
sion to slow or costly ones especially under the pressure of massive
real-time recommendation queries. For example, Criteo, which is
an Internet advertisement company, handles over 4 billion click-
throughs in 24 days1. Despite the large data volume, new features,
such as new users and items, are emerging rapidly, to which the rec-
ommender systems must quickly adapt for better user experience.
Therefore, learning the representations of an enormous number of
existing or emerging features can be computationally intractable
with existing approaches.

In addition to the interpretability and efficiency issues, we point
out another impediment that can degrade the performance of detect-
ing important cross-feature interactions: different cross-features
may have conflicting influences on CTR that have to be compre-
hensively analyzed. For example, a movie recommendation record
movie.genre = horror, user.age = young, time = 8am has con-
flicting factors: the combination of the first two encourages the
click-through whereas the combination of the latter two inhibits it
since movie watching usually happens at night. Such conflict prob-
lem is caused by the polysemy of feature interactions in different
semantic subspaces. In this example, the polysemic interactions of
user.age cause opposite impacts on CTR when user.age=young
is combined with two different attributes, movie.genre and time.
However, this problem is largely ignored by the existing methods.

To address the above issues, in this paper, we propose an In-
terpretable CTR prediction model with Hierarchical Attention (In-
terHAt) that efficiently learns salient features of different orders as
interpretative insights and accurately predicts CTR simultaneously
in an end-to-end fashion. Specifically, InterHAt explicitly quantifies
the impacts of feature interactions of arbitrary orders by a novel
hierarchical attention mechanism, aggregates the important feature
interactions for efficiency purposes, and explains the recommenda-
tion decision according to the learned feature salience. Different
from the hierarchical attention network by Yang et al. [34] that
studies the linguistic hierarchy (word and sentence), InterHAt uses
the hierarchical attention on feature orders, and the high-order
features are generated based on the lower ones.

To accommodate the polysemy of feature interactions in dif-
ferent semantic subspaces, InterHAt leverages a Transformer [29]
with multi-head self-attention to comprehensively study different
possible feature-wise interactions. Transformer has been popu-
larly employed in natural language processing tasks such as senti-
ment analysis, natural language inference [6], and machine transla-
tion [28]. The multiple attention heads can capture the manifold
mutual effects of words that jointly compose the semantics of text

1https://ailab.criteo.com/criteo-releases-new-dataset/

from different latent subspaces. We utilize this great property of
Transformer to detect the complex polysemy of feature interactions
and learn a polysemy-augmented feature list which serves as the
input of hierarchical attention layers. Note that despite the strong
capability of Transformer in feature learning, the model efficiency
is retained according to Vaswani et al. [29].

We summarize the contributions of our paper as follows.
• We propose InterHAt for CTR prediction. Particularly, Inter-
HAt employs hierarchical attention to pinpoint the signifi-
cant single features or different orders of interactive features
that have great contributions to the click-through. Then,
InterHAt can compose a corresponding attention-based ex-
planation for the CTR prediction based upon the various
orders of feature interactions.

• InterHAt utilizes a Transformerwithmulti-head self-attention
to thoroughly analyze possible interactive relations between
features in different latent semantic subspaces. To our knowl-
edge, InterHAt is the first approach that employs the Trans-
former with multi-head self-attention to learn the polysemy
of latent features for CTR prediction.

• InterHAt predicts CTR without using deep multilayer per-
ceptron networks that entail heavy computational cost. It
aggregates the features instead and hence saves the expense
of enumerating the exponential size of feature interactions.
As a result, it is more efficient in handling high-order features
than existing algorithms.

• Extensive experiments are conducted to evaluate InterHAt
for interpretability, efficiency, and effectiveness on three ma-
jor CTR benchmark datasets (Criteo, Avazu, and Frappe), one
popular recommender system dataset (MovieLens-1M), and
one synthetic dataset. Results show that InterHAt explains
the decision-making process, achieves a huge improvement
on training time, and still has comparable performance with
the state-of-the-art models.

The following sections are organized as the following. Section 2
briefly introduces related works of CTR prediction and attention
mechanism. Section 3 illustrates the technical details of each com-
ponents of InterHAt. Section 4 reports the empirical evaluations.
Finally, Section 5 draws the conclusions and discusses the future
research directions.

2 RELATEDWORK
In this section, we discuss existing CTR prediction models and
attention mechanism.

2.1 CTR Prediction Models
CTR prediction has drawn great attention from both academia
and industry [4, 7, 12, 18, 19, 23, 24, 26, 30–32, 36–38] due to its
significant impact on online advertisements. The advancement
of CTR prediction algorithms essentially shows a trend towards
deeper model architectures since they are more powerful in feature
interaction learning [27].

Factorization Machine (FM) [24] assigns a d-dimensional train-
able continuous-valued representation to each distinct feature,
learns the representations of distinct features, and makes predic-
tions by a linear aggregation of first- and second-order features.



Although FM can be generalized to high-order cases, it suffers from
computational cost of exponential complexity [3] and low model ca-
pability of shallow architecture. Field-aware Factorization Machine
(FFM) [16] assumes that features may have dissimilar semantics un-
der distinct fields and extends the idea of FM by making the feature
representation field-specific. Although it achieves better CTR result
than FM, the parameter size and complexity are also increased and
overfitting is easier to happen. Attentional Factorization Machine
(AFM) [32] extends FM with an “attention net” that improves not
only the performance but also interpretability. The authors argue
that the feature salience provided by the attention network greatly
enhance the transparency of FM. That said, AFM can only learn
up to the second-order attention-based salience due to the inherit
architectural limit of FM.

Wide&Deep [4] consists of a wide and a deep component, which
are essentially a generalized linear model and a multi-layer percep-
tron (MLP), respectively. The CTR prediction is made by a weighted
combination of the outcomes of the two components. Note that the
deep component, i.e., theMLP, ruins the possibility of explaining the
prediction because the layer-wise transformations are conducted on
unit level instead of feature level and individual unit level values can
not carry concrete and complete semantic information of features.
Deep&Cross Network (DCN) [31] slightly differs from Wide&Deep
in that DCN replaces the linear model with a cross-product transfor-
mation to integrate high-order information with non-linear deep
features. DeepFM [9] improves these two models by replacing the
polynomial production with an FM component. The deep MLP
component captures the high-order feature interaction and the
FM analyzes the second-order feature interaction. xDeepFM [19]
claims that MLP parameters are actually arbitrarily modeling the
“implicit” feature interactions. The authors hence introduce com-
pressed interaction network (CIN) to model the “explicit” features
alongside the implicit ones. Recent works from industry practice
include DIN [38] and DIEN [37] that respectively model the static
and dynamic shopping interest of users. Both work heavily rely on
deep feed-forward networks which are typically unexplainable.

All aforementioned CTR prediction models depend heavily on
deep neural networks and achieve ever increasing performances.
However, as a sword has two edges, deep learning algorithms suffer
from potential risks in reliability and security. The weights and
activations of hidden layers are hardly explainable and the causal
relationships between the inputs and outputs are concealed and un-
certain. They all fail to provide any feature-level clues that explain
why such deep feature learning strategies enhance or diminish
the CTR performance. Consequently, the predictions made thereby
without clear explanations are considered untrustworthy. In con-
trast, InterHAt addresses CTR prediction using attention-based
interpretation on feature-level. That is, InterHAt is free of unjusti-
fiable deep MLP modules and only works on feature levels, which
also improve the efficiency of InterHAt.

2.2 Attention Mechanism
Attention mechanism learns a function that weighs over interme-
diate features and manipulates the information that are visible to
other modules of the machine learning algorithm. It is originally
proposed for the neural machine translation (NMT) [1] for which

it assigns greater weights to closely correlated words between the
source language and the destination language so that important
words are attended to in the translation.

Due to its capability to pinpoint and amplify salient features that
greatly affect the predictions [8], attention mechanism is regarded
as a reasonable and reliable way to explain the decision-making pro-
cedure in many tasks such as recommender systems [32, 35], health
care systems [5], computer vision [33], visual question answering
(VQA) [14, 21], etc.

For example, RETAIN [5] studies Electric Health Records (EHR)
of patients with a two-layer attention network that identifies and
explains influential hospital visits and significant clinical diagnoses
associated with the visits. Co-attention mechanism [14] in VQA
proposes question-guided visual attention and visual-guided ques-
tion attention on word level, phrase level, and question level. Three
levels of information are combined to predict the answer with
improved performance while retaining the explainability of the
outcomes.

In natural language domain, language-specific and across-language
attention networks based on linguistic hierarchy [22, 34] such as
words and sentences are proposed for document classification tasks.
Another form of attention in NLP is self-attention. Researchers from
Google design Transformer [29] based on multi-head self-attention
in which tokens in a sentence attend to other tokens within a same
sentence to learn the compound sentence semantics. Using the
strong learning power of Transformer, BERT [6], built by stacking
a number of bi-directional Transformer layers, achieves state-of-
the-art performance on 11 major NLP tasks. The success of BERT
shows the outstanding feature interaction power of Transformer.

In summary, a variety of existing works have endorsed that
utilizing attention mechanism improves both accuracy and trans-
parency of the model. Although the attention modules are not
trained for generating human readable prediction rationales, they
can still reveal the salience distribution of information when the
feature representations flow through the model architecture, which
can serve as a form of explanation. Therefore, we employ atten-
tion mechanism as the solution to interpret the CTR prediction in
InterHAt.

3 THE INTERHAT MODEL
In this section, we elaborate the pipeline of InterHAt depicted in
Figure 1 and CTR prediction interpretation method according to
the attentional weights.

3.1 Embedding Layer
Feature embedding is a prerequisite for CTR prediction since the
click-through records contain discrete categorical terms that are
not directly applicable to numerical computations [9, 23, 26, 31].

A click-through record contains a set of fields F and a binary
label y as the ground truth representing whether a click-through
is actually made. Each field f ∈ F has either a categorical or a
numerical value. Distinct values are defined as different features.
For categorical fields, we apply multi-field one-hot encoding to
field-aware embedding layers for low-dimensional real-valued fea-
ture representations. Specifically, each distinct feature value v of
a field is assigned a trainable d-dimensional continuous vector as
its representation. If a particular feature appears in a click-through
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…

Figure 1: InterHAt pipeline. The inputs are categorical and
numerical features at the bottom and the outputs are a pre-
diction ŷ and a cross entropy loss. The black arrows explain
the data flow for training and prediction, the blue arrows
illustrate the collection of attentions for interpretation.

record, the corresponding embedding of that feature is considered
as the field representation. For numerical fields, we assign one vec-
tor to each field as its embedding. Givenvf as the normalized value

of a numerical field f and x (f )num,0 ∈ Rd as the trainable represen-
tation associated with this field, the representation of the feature,
x
(f )
num ∈ Rd , is derived by x (f )num = vf · x

(f )
num,0. The initial input rep-

resentation matrix X0 ∈ Rd×m is then X0 =
(
x (1)0 ,x

(2)
0 , . . . ,x

(m)

0

)
wherem = |F |.

3.2 Multi-head Transformer
Transformer is prevalent in NLP thanks to the outstanding power
to learn the co-effects to the text semantics of word pairs within a
sentence or across sentences regardless of the orders and distances
of the words. In the context of CTR prediction, we define the co-
effects of the features, i.e., feature interactions, towards different
polarity as the “polysemy”. Therefore, we equip InterHAt with a
multi-head self-attention based Transformer to capture the rich
pair-wise feature interactions and learn the diversified polysemy of
feature interactions in different semantic subspaces, i.e., diversified
implications towards the CTR in different click-through contexts.

Given the input matrix X0 that contains the learnable embed-
dings of features of a training CTR record, the latent representation
Hi of Transformer head i is obtained by a scaled dot-product atten-
tion [29],

Hi = softmaxi
(
QKT
√
dK

)
V,

Q =W(Q )

i X0, K =W(K )

i X0, V =W(V )

i X0.

Matrices W(Q )

i ∈ RdK×d , W(K )

i ∈ RdK×d , and W(V )

i ∈ RdK×d are
weight parameters to learn for head i and dK denotes the dimension
of K and Hi ∈ R

dK×m .
A combination of hidden features Hi forms an augmented repre-

sentation matrix X1 that preserves both the intrinsic and polysemic
information of each feature. Computationally, we use concatenation
followed by a feed-forward layer and a ReLU for the combination
to learn the non-linearity of the combined information as

X1 = ReLU(FeedForward(Wm [H1;H2; . . . ;Hh ])),

where Wm ∈ Rd×hdk contains the weights and h is the number of
attention heads and “;” denotes the concatenation of matrices. The
X1 ∈ Rd×m is the matrix with polysemy-augmented features and
ready to be sent to the hierarchical attention layer for explainable
CTR prediction.

3.3 Hierarchical Attention
The augmented feature matrix X1 is served as the input of the hi-
erarchical attention layers which learn the feature interaction and
generate interpretations simultaneously. However, computing the
high-order multi-feature interactions by enumerating all possible
combinations is expensive due to the combinatorial explosion. Such
potential expense motivates the aggregation of the current order
before proceeding to the computation of the higher order. That is,
in order to generate the (i +1)-th order cross-features Xi+1, we first
aggregate the i-th layer hidden features to ui as a summarization
of Xi . The interaction between Xi and X1, from which we derive
Xi+1, is computed by the proxy of Xi , i.e., the attentional aggrega-
tion ui from Equation (1), and X1. Mathematically, given the i-th
feature matrix Xi =

(
x (1)i , . . . ,x

(m)

i

)
, its attentional aggregation

representation ui is

ui = AttentionalAgg(Xi ) =

m∑
j=1

α
(j)
i x (j)i , (1)

where α (j)i ∈ R denotes the attention on the j-th field in the i-th
attentional aggregation layer. α (j)i is computed by

α
(j)
i =

exp (cTi ReLU (Wix
(j)
i )∑

j′∈F exp (cTi ReLU (Wix
(j′)
i ))
, (2)

where Wi ∈ R
s×d is the weight of layer i , ci ∈ Rs is the context

vector of layer i , and s denotes the attention space size. Note that
other attention mechanisms can also be adopted here, such as the
gated attention mechanism [15]. Using ui and Xi , we derive x

(j)
i+1

in Xi+1 by a cross-product transformation [4, 11]

x (j)i+1 = ui ◦ x
(j)
1 + x

(j)
i , j ∈ {1, . . . ,m}, (3)

where ◦ denotes the Hadamard product of two vectors.
Recurrently applying Equation (1) and Equation (3) produces ui

and Xi for feature orders from the 1st order to the k-th, the highest
cross-feature order to analyze, by a series of attentional aggregation
layers. These layers composite a hierarchy that extracts features
from low order to higher ones and the lower ones contribute to
the construction of one-order higher features using the proposed
attentional aggregation and cross-product transformation.



As the last step, we combine attentional aggregationsU = (u1,u2,
. . . ,uk ) to predict the probability of click-through. U gathers all
combinatorial feature semantics of k orders. By modifying k , In-
terHAt is able to capture arbitrary order of feature interactions,
and yet avoids the exponential cardinality of high-order feature
combinations.

3.4 Objective Function and Optimization
The final CTR prediction function д(U) = ŷ ∈ [0, 1] maps U to a
probability that quantifies the CTR. д(U) is implemented as the
following. It first computes the attentional aggregation of U by
Equation (4) and Equation (5) to obtain its aggregation uf ∈ Rd

and attention α f ∈ Rk ,

uf = AttentionalAgg(U) =
k∑
j=1

α
(j)
f u j , (4)

α
(j)
f =

exp (cTf ReLU (Wf u j )∑
j′∈{1, ...,k } exp (cTf ReLU (Wf u j′))

, (5)

where α f is the importance distribution across k feature orders, cf
andWf are learnable parameters. Finally, the prediction ŷ is then
made by

ŷ = sigmoid(MLP(uf ))
where MLP(·) refers to a shallow Multi-layer Perceptron that re-
duces the output dimension from d to 1. The objective function,
Equation (6), of InterHAt is a cross entropy loss of binary classifi-
cation.

L(Θ) =
∑
t ∈D

[−yt log(ŷt ) − (1 − yt ) log(1 − ŷt )] + λ | |Θ| |2. (6)

D denotes the training set and Θ includes all trainable parameters,
namely feature embeddings and the parameters of Transformer and
hierarchical layers. An L2 regularization weighted by λ is applied
to Θ to prevent overfitting. We optimize Equation (6) by Adam
gradient descent optimizer [17].

3.5 Interpretation
This section elaborates how to “understand” the attentions in the
hierarchy as important factors that trigger the prediction of CTR.
Note that the attention mechanism only highlights the salience
of features so it is not expected to generate completely human
readable interpretations. This assumption is consistent with other
attention-based interpretable models [8].

Here is a walk-through of the interpretation using the salience
distribution (α 1,α 2, . . . ,αk ) and α f . α f contains the significance
of all k orders of features and signifies the feature orders that
are influential to the ultimate CTR prediction. Dominant weights
in α f ∈ Rk pinpoint the Xi ’s that contain significant i-th order
features. According to α f , we learn the numbers of orders, i.e., the
numbers of interacting features, that have the strongest impact to
encourage the user to click through the recommended ads.

The attentionweights in correspondingα i identify the candidate
individual features that participate in the contributory i-th order
features. For example, if the attention weights of features of fields
f1 and f2, i.e., α i [f1] and α i [f2], outweigh the rest of the features
in α i , we learn that features of field f1 and f2 both contribute to an

i-th order feature since they actively interact with the i − 1 order
aggregation features. Finally, following the above steps, we can
identify all features in different orders. The actual click-through is
interpreted by identifying salient features layer by layer and order
by order.

4 EXPERIMENTS
In this section, we present the experimental results of InterHAt on
its efficiency, effectiveness, and interpretability. The prototype of
InterHAt2 is implemented by Python 3.7 + TensorFlow 1.12.0 and
run with a 16GB Nvidia Tesla V100 GPU.

4.1 Efficiency and Effectiveness
4.1.1 Experiments Setup.

Datasets. Weevaluate InterHAt on three publicly available datasets,
namely Criteo3, Avazu4, and Frappe [2]. Criteo and Avazu contain
chronologically ordered click-through records from Criteo and
Avazu which are two online advertisement companies. We use their
top 30% records for evaluation. Frappe dataset contains context-
aware app usage log. Table 1 shows the statistics of the datasets.
The ratio of train, test, and validation set sizes is 8:1:1.

Table 1: Statistics of Criteo, Avazu, and Frappe datasets

Dataset Criteo Avazu Frappe

#. of features (C + N) 22 + 14 21 + 0 7 + 0
#. of total records 13.8M 12.1M 288K

#. of distinct features 605.7K 23.8K 5,382

Baseline models and metrics. The performance of InterHAt is
compared with the following state-of-the-art approaches specifi-
cally designed for CTR tasks:

FM [24] FactorizationMachine that uses linear combination of
first-order and second-order (dot-product of feature vectors)
to compute CTR.

Wide&Deep [4] An ensemble method of general linear model
and an unexplainable deep MLP.

DCN [26] An ensemble method of a cross-product transfor-
mation for high-order features and a deep MLP.

PNN [23] A production based feature engineering algorithm
that uses an architecture composed by simple inner product,
outer product, and non-linear activation functions for CTR
prediction.

DeepFM [9] A combination of a deep MLP and a factorization
machine to compute CTR.

xDeepFM [19] A combination of a deep MLP and a novel
compress information networkmodule that more thoroughly
studies the subtle implicit features for CTR.

We argue that the baseline models considered are strong enough to
present the state-of-the-art performance on CTR prediction, espe-
cially on Criteo and Avazu which are dedicated for CTR prediction
evaluation and have been utilized in the most of the above works.
2Source code anonymous for review.
3https://www.kaggle.com/c/criteo-display-ad-challenge
4https://www.kaggle.com/c/avazu-ctr-prediction

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction


Figure 2: Efficiency comparison between InterHAt and five
state-of-the-art models on average runtime per epoch

We focus on metrics Logloss, i.e., the cross entropy loss, and
AUC which is the shorthand of Area Under the ROC Curve. These
two metrics are widely adopted by CTR prediction evaluations. A
smaller Logloss or a larger AUC represents better performance.

Default hyperparameters. The default settings of each dataset
are listed in Table 2 for reproducibility purposes. The settings vary
across the three datasets due to different dataset sizes.

Table 2: Settings of hyperparameters of InterHAt.

Dataset Criteo Avazu Frappe

Embedding size (d ) 12 8 12
Attention size (s) 30 20 16

#. of heads 12 8 4
Regularization weight (λ) 2e-4 2e-4 2e-3

4.1.2 Efficiency and effectiveness. We illustrate the comparison of
InterHAt with baseline models and its variant to show its efficiency
and effectiveness.

Efficiency. Figure 2 demonstrates a comparison on the runtime
between InterHAt and five state-of-the-art models with GPU im-
plementations on Criteo and Avazu. Frappe is not used for the
efficiency test since its size is relatively small and the computa-
tional overhead accounts for most of the runtime. FM is also not
used since only CPU-based implementation is available. The y-axis
shows an average runtime per epoch over five training epochs af-
ter which all models start to converge observably. The hardware
settings are identical to what mentioned in the experiment setting
session. From the figure, we observe that InterHAt displays an out-
standing efficiency by spending the minimum time for each epoch
among the six models.

Two properties of InterHAt enable the huge speedup: (1) The
attentional aggregation operations across the features reduce the
problem scale from exponential to linear by avoiding the enumera-
tion of all possible feature combinations in the k orders; (2) Only
shallow MLP layers are involved in IntarHAt in contrast with the
deep MLP used in the baseline models. Deep neural network can
drastically slow down the computation due to the humongous pa-
rameter sizes.

Effectiveness. In CTR prediction task, a 10−3 magnitude of perfor-
mance gain on AUC or Logloss is considered as a huge improve-
ment. We observe from Table 3 that InterHAt outperforms all
models on Frappe and Avazu on both metrics, and attains compara-
ble performance on Criteo. Therefore, the effectiveness of InterHAt
is substantiated despite the fact that InterHAt is structurally simpler
compared with other models. InterHAt-S refers to the variant of
InterHAt that has the multi-head self-attention module removed as
an ablation study. The decreased performance of InterHAt-S proves
the contribution of the multi-heads based Transformer.

The reason that InterHAt virtually ties other models on Criteo is
that the features of Criteo are more complicated in semantics as op-
posed to Avazu and Frappe. Competing models use non-explainable
deep fully-connected (FC) layers to capture the complex implicit in-
formation and improve the performance. However, InterHAt is free
of deep FC layers that damage themodel interpretability. In addition,
the current field-aware embedding strategy, in which numerical
fields only have a single embedding x (f )num,0, undermines the ability
of InterHAt to parameterize numerical-numerical and categorical-
numerical feature interactions. We leave the exploration towards
proper feature representation and parameterization scheme for
future work.

Table 3: Performance comparisons of InterHAt and baseline
models on Logloss and AUC

Dataset Criteo Avazu Frappe

Metrics Logloss AUC Logloss AUC Logloss AUC

FM 0.4814 0.7525 0.3951 0.7508 0.4480 0.8625
Wide&Deep 0.4577 0.7845 0.3920 0.7564 0.2571 0.9500

DCN 0.4590 0.7826 0.3921 0.7564 0.2335 0.9616
PNN 0.4547 0.7887 0.3916 0.7569 0.2177 0.9642

DeepFM 0.4560 0.7866 0.3920 0.7561 0.2410 0.9520
xDeepFM 0.4563 0.7874 0.3917 0.7569 0.2043 0.9694

InterHAt-S 0.4608 0.7820 0.3919 0.7577 0.2151 0.9616
InterHAt 0.4577 0.7845 0.3910 0.7582 0.2026 0.9696

Figure 3: Sensitivity on number of heads in Transformer

4.1.3 Sensitivity on Transformer heads. This section illustrates the
hyperparameter sensitivity study on Transformer head numbers as
an ablation study. The Logloss and AUC of InterHAt with different
numbers of heads are given in Figure 3. We change the number of
heads from 1 to 12, keep other settings fixed, and train the model
until convergence. For Criteo and Avazu, the optimal options of the
number of heads are 8 and 4, respectively. For Frappe, the optimal



Figure 4: Sensitivity study on the highest feature orders

head number falls on 1, which is consistent with our observation
that the semantics of Frappe fields is isolated from each other with-
out any potential interactions. The results prove the existence of
the multiple aspects of semantics, i.e., the feature polysemy, in the
click-through records in complex datasets and justify the usage
of multi-head Transformer. As the number of heads increases, the
performances descend due to over-parameterization.

4.1.4 Highest feature order. We evaluate InterHAt with different
highest feature order, i.e., different k , on three datasets. The k
changes from 1 to 4. We use cross-features from the first- to the
k-th-order in these experiments. The results are shown in Figure 4.
On large datasets, Criteo and Avazu, the AUC and Logloss have
marginal fluctuations when the order increases. However, in Frappe
datasets, overfitting comes into existence after the order is greater
than 3. In general, InterHAt has a stable performance on high-order
learning.

4.2 Interpretability
Interpretation is generated in company with the predictions which
is one of the major contributions of InterHAt. In this section, we
demonstrate the interpretations by visualizing the learned salient
low- or high-order features. However, the actual content of the click-
through records in the two public real-world benchmark datasets,
Criteo and Avazu, are encrypted for privacy-preserving issues,
which makes it impossible to justify the interpretation constructed
by InterHAt. Therefore, in order to comprehensively test the ex-
planation generation of InterHAt, we use a real-world dataset and
a synthetic dataset to simulate real click-through records. In the
following subsections, we discuss data collection and results based
on the two datasets.

4.2.1 Evaluate on real dataset.

Dataset. The real semantic meaning of the features in Criteo
and Avazu are encrypted. Other datasets that are also in recom-
memder system domain are appropriate substitutes. Therefore, we
select MovieLens-1M [10] dataset for this tasks. MovieLens-1M has
plaintext5 attributes and is also extensively employed to evaluate
recommender systems [27]. It is composed of around 1M anony-
mous movie ratings given by 6,040 MovieLens users. Each records
has user profile, movie genres, and a rating ranging from 1 to 5. User
profiles include Age, Gender, and Profession and movie attributes
include Release year and 18 genres. We consider a “rate” action

5https://grouplens.org/datasets/movielens/1m/

Figure 5: Attention weights of a first-order salient feature
example (The Terminator, 1984)

in MoiveLens-1M as a click-through in CTR prediction, i.e., the
positive samples with labels as 1. We create a negative records with
the same amount as the positive ones by randomly sampling pairs
of movies and users and label them as 0. The positive and negative
datasets are disjoint to each other.

Results. We plot the heat maps of the attention weights from the
first-order to the third-order, that is, the α i in Equation (2) with
i ∈ {1, 2, 3}. We select k = 3 since few higher order features are
found significant. Theα f of the following cases are not presented in
the interest of space. Thek-order example we select for visualization
has a largestα f [k] among all weights in the correspondingα f . The
darker cells in Figure 5, 6, and 7 signify greater feature importance
that InterHAt learns from the rating records. The movie genres in
the figures have been shortened to three letters6. In the Raw genre
rows, black cells mean the movie has the corresponding genre
attributes in the raw data, i.e., the training data.

Figure 5 shows a rating to the movie The Terminator (1984),
which reports the largest aggregation attention weight on the first-
order features. In this record, we observe that M.ID and M.Sci.
significantly outweigh other cells in the 1st-order row due to the
high reputation of the movie itself and its outstanding characteristic
as a Sci-Fi (Science Fiction). InterHAt also detects that the other
two genre labels, Action and Thriller, are not as accurate and hence
not highlighted. Higher order interactions are not observed as
strong since people may already make the decision to watch The
Terminator by its great reputation as a Sci-Fi movie.

Figure 6 demonstrates a second-order interaction dominated case
in a rating towards Léon: The Professional (1994). We observe one
first-order feature and two second-order features with more “heat”.
For the two second-order features, Crime and Romance interaction
is captured due to the moving love and criminal story that the
movie tells. The combined affect of the two characteristics increases
the probability of this movie being watched and rated. A first-
order feature U.ID is highlighted since InterHAt discovers from
the training data that this particular user frequently rates movies.
InterHAt then believes a rate is likely to happen when he or she
is present. This is consistent with logic of attention-based model
interpretation in Section 2.2 that it is only able to highlight the
steering of information flow in the model but unable to create an
intuitive human-readable story of predictions.

An example of the third-order interaction dominated case is
given in Figure 7 where the feature importance of a rating of Toy
story 2 (1999) is depicted. We observe a three-feature interaction,
Release year, Animation, and Children, in which we are curious

6Please refer to http://files.grouplens.org/datasets/movielens/ml-1m-README.txt for
the full names.

https://grouplens.org/datasets/movielens/1m/
http://files.grouplens.org/datasets/movielens/ml-1m-README.txt


Figure 6: Attentionweights of a second-order salient feature
example (Léon: The Professional, 1994)

Figure 7: Attention weights of a third-order salient feature
example (Toy story 2, 1999)

about how Release year interacts with the other two closely related
features. It turns out that the year 1999 is important for animated
movies and the total amount of tickets sold reaches a maximum
between 1995 and 2000 according to a movie market survey7.

4.2.2 Evaluate on synthetic dataset.

Dataset. Considering that MovieLens-1M is genuinely rating
data rather than click-through data, we conduct a set of experiments
using synthetic data to show the interpretability. The synthetic
data contains 100k synthesized click-through records with 10 fields
F = [f1, . . . , f10] simulating real click-through records. Each field
is created independently and can take values from [β1, . . . , β10].
The synthetic instance labels are decided by the feature groups
using the rules in Table 4 as a simulation of groups of feature(s)
solely or jointly affecting the CTR prediction. The labels are decided
as follows. Given a feature group G, y = 1 representing the click-
through happens, and y = 0 as the opposite,

Pr(y = 1|F ,G) =
{
p1 if ∀fi ∈ G, fi .val = βi ;
p2 otherwise. (7)

For example, enabling Rule 2 in Table 4 implies that the synthetic
label hasp1 probability to be 1 and 1−p1 to be 0 when the conditions
hold that f3.val = β3 and f4.val = β4. Otherwise, the label will
be set to 1 by p2 probability and o by 1 − p2 probability. We set
p1 to 0.9 and p2 to 0.2 to represent high and low probabilities of
click-through. Without loss of generality, we evaluate features from
the first-order to the third-order.

Table 4: Rules for creating the synthetic dataset

Index k-th order Feature group G

1 First-order {f1}
2 Second-order {f3, f4}
3 Third-order {f5, f6, f7}

7https://m.the-numbers.com/market/production-method/Animation-and-Live-
Action

Results. We present the salient features by heat maps of the
attentions in each layer. Each cell of order i in the following heat
maps represents a normalized average of aggregation attention α i
of all records that satisfy the rule, i.e., fi .val = βi .

Figure 8 depicts the heat map of the first order by enacting Rule 1.
We observe that f1 draws the largest attention among all features
which is consistent to Rule 1. An additional observation is that the
variance from the attentions is small, meaning that using first-order
only for learning and predicting has a low stability.

Figure 8: First-order attention heat map

We plot the second-order heat map in Figure 9 to visualize the
second-order feature interactions by Rule 2. The learned attention
values on f3 and f4 are notably greater than other cells as they have
lighter colors in contrast with the black ones. Although the cells
of f3 and f4 have different colors, they are still numerically close
to each other. Therefore, the results in Figure 9 also demonstrate
the ability of InterHAt to extract salient features and interpret
click-through predictions.

Figure 9: Second-order attention heat map

Rule 3 exemplifies the interpretability in high-order scenarios.
We include the heat maps from the first-order to the four-order in
Figure 10. From the top three rows, we spot the process of InterHAt
acquiring feature interaction knowledge from the dataset. In the
first-order, f6 and partial f5 information is learned. Next, f5 and
partial f7 are captured in addition to f6 in the row of the second-
order. Then, the third-order finished acquiring all the interaction
information. Finally, the fourth-order features show uniform atten-
tion values with marginal variability, which demonstrates that the
high-order feature learning terminates at the third-order and no
greater order features are present in the dataset.

Figure 10: Third-order attention heat maps

In summary, we comprehensively evaluated the ability of In-
terHAt to generate rationales while predicting the CTR using a

https://m.the-numbers.com/market/production-method/Animation-and-Live-Action
https://m.the-numbers.com/market/production-method/Animation-and-Live-Action


real-world dataset and a synthesized dataset. The heat map visual-
izations of both datasets can be reasonably explained in alignment
with human perception, which endorses the interpretability of In-
terHat.

5 CONCLUSION
In this paper, we proposed InterHAt, an interpretable, efficient, and
effective CTR predictor. InterHAt leverages a multi-head Trans-
former to learn the polysemy of feature interactions and leverages
a hierarchical attention structure to learn the importance of dif-
ferent orders of features. The explanation is inferred according to
the learned importance distribution. Moreover, InterHAt achieves
a relatively low computational cost compared with other models.
Comprehensive experiments show that InterHAt can learn inter-
pretable importance for feature interactions, runs faster than state-
of-the-art models meaning a high efficiency on CTR prediction, and
achieves comparable or even better performances.

Here are a few aspects for future effort: (1) A better embedding
learning paradigm of numerical features is needed to boost the
performance; (2) Explainable deep neural networks, such as MLP
and outer products-based networks, are in demand to achieve high
accuracy and interpretability.
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