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ABSTRACT

Point-of-interest (POI) recommendation is an emerging area of re-
search on location-based social networks to analyze user behaviors
and contextual check-in information. For this problem, existing
approaches, with shallow or deep architectures, have two major
drawbacks. First, for these approaches, the attributes of individu-
als have been largely ignored. Therefore, it would be hard, if not
impossible, to gather sufficient user attribute features to have com-
plete coverage of possible motivation factors. Second, most existing
models preserve the information of users or POIs by latent repre-
sentations without explicitly highlighting salient factors or signals.
Consequently, the trained models with unjustifiable parameters
provide few persuasive rationales to explain why users favor or
dislike certain POIs and what really causes a visit. To overcome
these drawbacks, we propose GEAPR, a POI recommender that
is able to interpret the POI prediction in an end-to-end fashion.
Specifically, GEAPR learns user representations by aggregating
different factors, such as structural context, neighbor impact, user
attributes, and geolocation influence. GEAPR takes advantage of a
triple attention mechanism to quantify the influences of different
factors for each resulting recommendation and performs a thorough
analysis of the model interpretability. Extensive experiments on
real-world datasets demonstrate the effectiveness of the proposed
model. GEAPR is deployed and under test on an internal web server.
An example interface is presented to showcase its application on
explainable POI recommendation.
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1 INTRODUCTION

Point of interest (POI) recommendation is a critical component in
the recommender system family. Point of interest refers to locations
that customers of online business directories or review forums are
interested in. Such directories or forums are typically named as
location-based social network (LBSN), e.g., Yelp and Foursquare, since
users interact with each other in various ways such as co-reviewing,
co-visiting, or direct connecting via friendship relations.

POI recommendation has a wide coverage of scenarios in which
the advertised items have significant spatial attributes that strongly
influence the user decisions. Properly recommending POI replies on
precisely understanding user taste, POI’s property, geolocation, and
their correlations. Varying from simple to sophisticated, existing
algorithms are painstakingly customized for more precise user pref-
erence modeling, POI profiling, and user-POI relevance estimation.
In other words, the development of POI recommendation systems
witnesses the utilization of multiple modalities of data to achieve
more satisfactory POI recommendations.

That being said, we point out two prevalent shortcomings of
existing models: (1) inadequate interpretable motivation analysis
for POI visits, and (2) absent attribute study for users with a diverse
background.

First, for motivation analysis, the ranking functions of exist-
ing approaches merely fuse the multi-modal information without
explicitly quantifying or explaining which modalities are compar-
atively more important than the others and which are less rele-
vant. However, quantitatively comprehending the key causes of
the check-ins is valuable because it is able to measurably interpret
the users’ mind-sets on choosing the next POI to visit. For exam-
ple, some users always check in places their friends have checked
in or have suggested, while others tend to visit places that their
peer group favors. Such numerical motivation importance measure-
ments can also reasonably provide a clear answer to the following
debate. Tobler’s first law of geography [36], frequently cited by
previous work [19, 44, 50], states that: “Everything is related to ev-
erything else, but near things are more related than distant things”
But authors of GeoMF state the opposite: a user’s visit to certain
POI implies exactly her indifference to those nearby, otherwise
she would have visited them instead in the first place [25]. With
numerical motivation analysis, it becomes easy to capture and in-
terpret the primary causes of user check-ins, i.e. the motivations,
which also benefits LBSN on explaining their recommendations.
In contrast, existing approaches are not adaptive enough to learn
different motivations in a transparent way. They instead simply use
unweighted additions [31, 52] or feature vector concatenations [43]
to mingle the intermediate information and produce recommenda-
tions. Motivation importance is hardly revealed by these operations.
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Such discrepancy calls for an effective architecture that is elabo-
rately developed for interpretable motivation analysis with explicit
salience distribution on different motivation factors.

Second, existing POI recommendation methods largely ignore
user attribute study which, however, is of great importance. The ex-
tensive literature of item-based recommender systems, e.g., movies
and books, have demonstrated the potential of user profile, demo-
graphics, and their complex joint effects to enhance recommenda-
tion accuracy [2, 11, 13, 23, 34, 41]. Such potential is also plausible
in the context of POI recommendation. For example, the young
population loves to try different restaurants in different locations
while the seniors may have distance concerns. However, user at-
tribute information has been underestimated even by the recent
deep learning-based POI recommendation models [31, 52, 54, 55, 57]
although deeper models have superior ability to fuse different in-
formation modalities and capture the corresponding importance.
Therefore, it is necessary to incorporate the user attribute features
to comprehensively cover possible motivation factors.

To address the two aforementioned concerns, we propose a
Graph Enhanced Attention network for explainable POl Recommen-
dation (short for GEAPR) in this paper that recommends POIs in
an adaptive and interpretable way. GEAPR leverages not only geo-
graphical and social information but also user personal attributes
and provides an end-to-end justification of the recommendation in
the meantime. Specifically, we decompose the possible motivating
causes into four factors:

Structural Context. A check-in can be motivated by neighboring
users with high structural proximity in the social network since
they have a similar social context. This type of stimulus is typically
ignored as it is latent and implicit. We argue and experimentally
demonstrate that social structural context is a critical cause of visits.

Neighbor Impact. Impact from direct neighbors, i.e., friends, is an-
other factor of interest since people are likely to trust their friends’
suggestions and check-in POIs their friends did before. Previous
works characterize neighbor impact by MF-based methods which
fail to generate explanations simultaneously.

User Attributes. Check-in behaviors can also be spontaneous
due to users’ characteristics such as age, religion, income level, etc.
For example, young users may choose to check-in the POIs that
other young people love without external stimulus such as friends.
GEAPR proposes to understand the underlying correlation between
check-in behavior and attributes in a novel manner. Factorization
machines-based models are dedicated to learning from attribute
data. Therefore, GEAPR utilizes a factorization machines equipped
with the attention mechanism to learn attribute features.

Geolocation Influence. Geolocation influence has a particularly
strong impact on POI recommendations because it is intuitive that
people are more aware of nearby restaurants, supermarkets, or
museums, etc. than distant ones. In GEAPR, we fix the POI influence
distribution parameterized by Manhattan distance and learn the
user preference for each geographical unit.

Altogether, GEAPR takes advantage of the attention mechanism
to quantify the influences of different factors for each resulting
recommendation and performs a thorough analysis of the model
interpretability. Some literature [15] states that attentions lack ro-
bustness to serve as an explanation. We acknowledge the statement
but argue that interpretability reveals the salience of the factors the

model captures from the complex statistics of training data. Also,
to the best of our knowledge, generating a fully human-readable
explanation as a by-product of the ranking score is yet technically
infeasible since even users themselves are unable to articulate the
exact reasons that motivate a visit to a POL

The geolocation feature encoding is decoupled from the three
other factors that only focus on the user’s personal motivation. The
main rationale is for the compatibility: although GEAPR is applied
to the POI recommendation, it can be painlessly transplanted to
geolocation-irrelevant recommendation scenarios by simply detach-
ing the geolocation module. Examples include movie recommenda-
tion [53], question routing [24], and new friend recommendations,
etc. We summarize the major contributions:

e We propose GEAPR, a POI recommender that is able to in-
terpret the POI prediction in an end-to-end fashion. It specif-
ically focuses on four factors, namely structural context,
neighbor impact, user attributes, and geolocation influence,
and quantifies their influences by numeric values as the fea-
ture salience indicators.

e User attributes are taken into consideration in GEAPR. To the
best of our knowledge, this is the first work that incorporate
attributes to POI recommendation.

e Attention mechanism is used to address the recommendation
interpretability by means of finding significant factors which
are more influential in POI recommendation compared with
other features.

e Extensive experiments are conducted on two real-world
datasets from Yelp. Experimental results demonstrate the
effectiveness of the proposed model. GEAPR has been de-
ployed and tested on the internal web server . Testing results
demonstrate the effectiveness of GEAPR.

2 RELATED WORK

2.1 POI Recommendation

POI recommendation is a popular task since it directly affects the
revenue and reputation of POI platforms. Research on this topic
has been fruitful [4-6, 12, 16, 18-22, 25, 27-31, 33, 35, 39, 40, 43—
52, 54-57]. We categorize them into traditional POl models and deep
learning-based ones and discuss their pros and cons by examples.

Traditional models. USG [44] is a collaborative filtering-based
model for POI recommendation. It suggests that not only social
connections but also geographical influences can help improve
the accuracy of POI recommendation. Therefore, USG specifically
looks at three complementary factors: user preference of POlIs,
social influences, and geographical influence. GeoSoCa [50] digs
deeper into POIs’ property that the category of POl is taken into
consideration. Authors argue that category is critical information
and it affects user preference since people have different biases
towards different types of POIs. Therefore, GeoSoCa firstly employs
the biases measurement to build personalized POI popularity. ASMF
and ARMF [19] refer to augmented square error based MF and
augmented ranking error based MF, respectively. Despite the minor
difference in the selection of error function, they both focus on user
relations from three dimensions which are generally defined as

1See Section 5.



“friendships”, namely social friends, location friends, and neighbor
friends. The emphases on user friendships strongly indicate that
users’ preference can be greatly reshaped by and effectively learned
from human-human connections.

Deep learning-based models. PACE [43] utilizes a multi-task learn-
ing architecture that models user context, POI context, and user-POI
interaction simultaneously. Technically, it assigns a learnable em-
bedding vector to each user and POI to capture their latent features
and use a feed-forward layers-based deep network to predict “user
context”, “POI context”, and check-ins. SAE-NAD [31] is composed
of a self-attentive encoder (SAE) for user-POI interaction model-
ing and a neighbor-aware decoder (NAD) for geographical context
modeling. SAE differentiates user preference degrees in multiple
aspects by self-attention. NAD ensures only physically and pref-
erentially nearby users’ check-ins receive stronger weights in the
POI recommendation. APOIR [55] signifies the first application
of generative adversarial network (GAN) [10] on POI recommen-
dation. The co-trained two sides of the mini-max game are the
recommender aiming to suggest the most probable POI check-ins
and the discriminator that separates the recommended POI from
the true visits.

Comparison with GEAPR. All aforementioned previous approaches
carefully attend to user preferences mining and POI profiling in
terms of categories and geolocations. However, we notice two major
disadvantages that deserve some improvements. First, attributes of
individuals have long been ignored even though recommendation
models such as factorization machine (FM) [34] has demonstrated
the usefulness of user attributes to enhance accuracy. Existing al-
gorithms have delicate design on user preference and geolocation
modeling [31, 54] but lack latent attribute learning for users. Sec-
ond, all previous models, either deep learning-based or MF-based,
preserve the information of users or POIs by latent representations
without explicitly highlighting salient factors or signals. Different
information sources are integrated by simple operations such as
addition, concatenation, or multilayer perceptrons (MLP). Conse-
quently, the trained models with unjustifiable parameters fail to
explains why users favor or dislike certain POIs and what really
causes a visit. However, GEAPR is able to address both concerns as
shown in Section 3 and Section 4.

Sequential POI recommendation. Sequential, or successive, POI
recommendation (SPR) models [16, 35, 39, 48, 52, 57] is a separate
branch of location-based recommendations from general POI rec-
ommendations such as GEAPR. They are essentially different use
scenarios. General models emphasize the modeling of general user
and POI characteristics whereas SPR models focus on time-sensitive
check-in suggestions and temporal POI visit behavior mining.

2.2 Attention Mechanism

Attention mechanism learns a function that generates weights to
intermediate features in the model pipeline and manipulates the
information which will be fed into other internal modules. Re-
searchers in neural machine translation first apply attention for
better alignments between source and destination language [1]. Be-
ing capable to identify important features and feature interactions
makes attention mechanism a reliable way to explain the “thinking”

of machine learning models [9]. Therefore, attention is considered
as the solution to “interpretablity” in various research scenarios
including recommender systems [23, 41, 47], graph representation
learning [38], computer vision [42], etc. Recent progress in natural
language processing strengthens the point that attention is also
beneficial to performance enhancement (7, 8, 37].

3 THE GEAPR MODEL

3.1 Overview
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Figure 1: The overall pipeline of GEAPR.

Table 1: Partial notations for GEAPR that are essential.

Notation(s) Definition

U,P,E The sets of users, POIs, and friendship relations in an LBSN.
Ny, np The total numbers of users and POIs in an LSBN.
The friendship graph for users. G = {U, E}.
NG (u) The set of neighbors of user u in G and Ng(u) = {v|(u,v) € E}.
F,m The set of fields with m fields of user attributes. m = |F]|.

M, The adjacency matrix of G, M, € {0, 1}"%>Mu,
Ms The structural context matrix based on Mg, Mg € R™XMu
hs, hp, hy  Hidden vectors of structural context, neighbor impact, and attributes.
hy The attentional aggregation of hg, hy, and hg.
hy The geolocation preference of the user.
9 The predefined geographical influence scores of POI to grids on a map.
rp The hidden representation of POI semantics.
Sup The score representing how likely user u will visit POI p.

The architecture of GEAPR is shown in Figure 1. Some important
notations are summarized in Table 1. The inputs of GEAPR include
the adjacency matrix M, of the friendship graph of LBSN, structural
context Mg, the users’ attributes ¥, and the POI influence scores.

GEAPR uses three different architectures customized for the
three factors on the user motivation side. Specifically, a dense neu-
ral network-based structural context encoder is utilized to learn
the structural context, a graph neural network-based attentional
friendship encoder is utilized to model the neighbor impact, and
an attention-based latent factorization machine is utilized for pre-
serving the attribute interactions.

These three sub-modules will generate three hidden feature rep-
resentations individually as hs, hy, and h,. The information from
three sources is then merged by an attentional aggregation [23]
strategy which is able to reveal the relative salience among them.
The merged motivation representation is then combined with geolo-
cation features as constraints so that strongly relevant but distant
POIs will be removed from the recommendation. GEAPR then takes



the dot-product of the graph-enhanced user embedding and the
POI embedding to generates a scalar score sy, representing the
likelihood of a user u visiting a POI p in the future.

In order to preserve reliable interpretability while making an
accurate recommendation, the building blocks of GEAPR focus on
attention-based algorithms. Although literature argues that atten-
tion lacks the potential to provide an “explanation” that agrees
with human perception, it still reveals the distribution of salience
which can be considered as a form of explanation. In addition, it is
worth noting that unlike the tasks where ground truth is typically
defined and easily accessible, formal explanations are unavailable
from LBSN or public datasets for interpretable POI recommenda-
tion as ground truth. Therefore, measuring the “correctness” of the
generated interpretation is impracticable.

3.2 Structural Context Factor

The structural context tries to model the commonality of the close
neighbors of a certain user. Intuitively, the proximity of user char-
acters and preferences can be propagated through a few hops of
social connections to form cliques within the network. In order to
capture social context from network structure, GEAPR utilizes Ran-
dom Walk with Restart (RWR), a popular method widely used for
learning community proximity [32]. The structural context features
of a user are learned based upon his or her RWR representation.

Mathematically, given a network G of n, nodes represented
by its adjacency matrix M, with Mg;; = 1 if nodes i and j are
connected and otherwise 0, a starting user g in U, the r-step RWR
vector p") € R is computed by

P =rp @+ (1-y)p" U [DTIM],

where y denotes the probability that the random walk generator
restarts from uy, p(o) denotes the corresponding row of ug in Mg,
and D denotes a diagonal matrix with D;; = Z;zl Mg,ij.

Let R denote the maximum step of the RWR process, the summa-
tion of p(r) is considered as the structural context. R is usually set
as a small value such as 2 or 3 to make sure only local information
is preserved in h} and b} = 3R | p") b, e R,

However, one problem of encoding the local context is the enor-
mous dimension: the size of h{, is the same scale as the user numbers.
Therefore, GEAPR conducts dimension reduction to h; to gener-
ate hg, the latent features of structural context, by a multi-layer
dense neural network with ReLU(x) = max(0, x) as the activation
function (using two layers as an example):

hs = ReLU(W! (ReLU(WTR] +b1)) +by), hs € RY,

where d is the dimension of hidden representations and {W;, b;}
are trainable parameters. ReLU(+) introduces non-linearity and en-
hances the representation learning capacity for structural context.

3.3 Neighborhood Impact Factor

The second aspect of potential visit stimuli is the direct friends
since one may naturally check in the POIs suggested by friends.
We thereby focus on the understanding of impact from neighbors
NG (u) of a user u. Graph attention network (GAT) [38] provides an
effective way to aggregate information from direct neighbors and
compute the attention to pinpoint significant neighbors. Therefore,

we encode neighborhood impact using an attention-based graph
neural-network. Given a user u and the friends of u, Ng(u), the
hidden neighbor feature hy, is

Z Ay jwnv il

JENG (u)

o(-) is typically a non-linear function such as ReLU(+) or tanh ().
W,, € R4 s alearnable weight matrix for the attention network
that maps all neighbor embeddings to a common space. v is derived
by the average POI embeddings that user j visited before. The scalar
ayj is the weight from user j to u and GEAPR computes a;,j by
Eq. (1) where LeakyReLU advances ReLU in that it allows shrunk
negative signal to flow through, “||” denotes concatenation along

h,=o0

an existing dimension, and a € R24 s a trainable vector that helps
compute the attention logits and W € R%*p,

exp (LeakyReLU (aT [Wo,||[Wo j]))

2ieNG (u) €XP (LeakyReLU (aT [Wvu||in]))

The set of attention weights a,; demonstrates the influential
neighbors. In addition to concatenation, other ways can also pro-
duce attention logits such as dot-product of »; and vy, the matrix-
dot-product v]TWvu, or the non-linear MLP of concatenation of v

1)

Quj =

and vy,. The original GAT [38] can handle multiple attention heads
and multiple neighborhood hops. Increased head numbers can pre-
serve information in more sub-spaces, and enlarged scopes of direct
or nearby users bring in more local context, which both benefit the
performance. However, in consideration of the interpretability, we
simplify the settings to a single head and one-hop neighbors.

3.4 Attribute Interactive Factor

Apart from the effects of social structural context and direct neigh-
bors, the personal attributes are also important factors to moti-
vate the user to visit particular POIs. The combinatorial possibili-
ties of feature interactions create diverse influences on the users’
preference towards POIs, which has been thoroughly studied in
feature-based recommender systems such as factorization machines
(FM) [34], DeepFM [11], and xDeepFM [26], etc. In GEAPR, we com-
bine feature-based FM methods with attention mechanism [41] to
analyze feature interaction and maintain interpretability.

Embedding the categorical and numerical features into a lower-
dimensional space is a prerequisite [11, 23, 26, 34, 41]. User at-
tributes can be written as m fields {F1, ..., F;, } with different val-
ues, also known as features. We assign a trainable vector to each
distinct feature f_ € R for categorical field and discretize the con-
tinuous value by bucketing and then treat the converted alternative
as a categorical feature for the numerical field.

Given the feature embeddings, user attribute impact is model as

m m m
ha=wo+ Y Bifi+>. > hijf;0f; @)
i=1 i=1 i=j+1
where wyq is the offset term, f;, and A;; are the attention weights
for first-order and second-order feature interactions. They are com-
puted as follows, given feature matrix F = {f,....f,,}, B =
softmaX(ReLU(qlTF)), Aij = softmax(quReLU(Wa(fi o f;) +b)).
Here q;,q, € Rd“, W, € R9Xda and b € R% denote learnable
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Figure 2: Geolocation encoding for users and POIs. Left:
three trainable user preference geographical distributions.
Right: an example of pre-defined POI influence score mea-
sured by Manhattan distance.

tensors to build attention weights. © is the element-wise multipli-
cation. Once more, we use the attention weights as the information
source for interpretability.

Eq. (2) contains an enumeration of the first-order features and
second-order feature interactions which are incomprehensive com-
pared with the exponential-sized feature interaction space. Studies
have shown that the first two orders of features are already capable
of contributing sufficient information for learning interactive fea-
tures and adding higher-order features is only making a marginal
information supplement. That being said, GEAPR still enjoys great
compatibility with higher-order features interaction models [2, 23].

3.5 POI Geographical Influence

In GEAPR, we model the geographical influence features from two
aspects: learnable user geolocational interest and predefined POI
area influence as shown in Figure 2. Specifically, we first divide
the city map of POIs into grids with nj,; units on the latitude axis
and njopg units on the longitude axis. We model the geographical
influence of a POl in grid p to a target grid t using the influential
score gp,; [25] as

gp’t — K (dman (p> t) )

%

where o, denotes the standard deviation of distances, K(-) denotes
a standard normal distribution, and dman (g, b) measures the Man-
hattan distance from the grid a to grid b. Therefore, we can define
the influential score vector g, of POI p as g, € R (ong 71at) which
is essentially a flattened 2-dimensional influential score matrix. We
are also curious about the geographical preference distribution of
users which is defined as a learnable parameter representing user
preference, hy € R (Mong Mat) Each user has one unique hy. We de-
fine the geographical influence correlation between users and POIs
by taking the product hgg p- The overlap between user-preferred
regions and POI influential regions can be selected and amplified
by multiplication.

3.6 Objective and Optimization
After showing the derivations of the representation of the four
causing factors, we show how to make predictions for future check-
ins. We first aggregate hg, hy,, and h, by an attention mechanism
as Eq. (3) and Eq. (4) since they all encode users motivation.

h, = s - ReLU(hg) + m, - ReLU(hy,) + 75 - ReLU(h,)  (3)

exp(wTReLU(hy))
Zx'e{s,n,a} eXP(WTReLU(hx’))

4

Txe{s,n,a} =

Then Eq. (5) computes the possibility of the potential check-in
su,p which is defined by the dot-product with motivation feature
and geographical feature of users and POIs. If r,, represents the
motivation-related POI semantics, then

sup = [hullhg] - [rpllg,] = hyry +hjg,,. )
The overall objective function is Eq. (6) which sums a ranking loss

Lyank and a regularization loss Lyeg Weighted by a hyper-parameter.
In GEAPR, we use Ly norm as the regularization term.

L = Lian (D, D) + cLyeg )

We use negative sampling to implement the ranking term that
specifically penalize on the negative samples D’ while optimizing
the positive samples D. There are two standard ways to implement
the ranking loss, Ly, namely pair-wise or point-wise ranking loss.
Point-wise (PO) Loss. Point-wise loss forces the positive instances
to approach an indicator 1 and pushes the negative instances to
indicator 0 via a cross-entropy loss of binary classification. y = 1 if
(u,p) € D,y =0if (u,p) € D’, and o (-) is the sigmoid function.

Liankepo ==, (410g(0(sup)) + (1= y) log(1 = 5(sup))) -
DD
Pair-wise (PA) Loss. Pair-wise loss tries to capture the partial
order relationships in the training data and maintain that order
between the scores of positive instances and negative instances.
We follow the method in RankNet [3] as the equation below with
(u.p) € D, (u,p’) € D', and Ay p pr = Sup — Sup’-

Liankpa = ., ~Bupp +10g(1+exp(Aup ).
D,D’
We use Adam [17] to optimize the parameters since all modules
in GEAPR are continuous and differentiable.

Complexity. We use 5(n) to denote the complexity of the mul-
tiplication of an n dimensional vector and an n X n dimensional
matrix. We omit the detailed computation of the complexity and
give the result as follows. Summing up complexity of the four mod-
ules and of the overall optimization, the forward pass complexity of
GEAPRis T = rd(ny) +6(d) +ny,6(dp) + m?8(dy) + O(niong X Niat)-
Further, considering that different dimensions are on the same scale,
we rewrite T as

T =r8(ny) + (ny + m?)8(d) + O(nigng X Niay).

If hyperparameters r, d, m, njong, and nj,; are set, they can be viewed
as constants. Then the complexity T of a training forward pass is
proportional to 8(n,), which equals to O(n2) and is common to
graph neural networks [38].

4 EXPERIMENTS

This section reports the evaluation of GEAPR on effectiveness and
interpretability by its performance on real-world datasets and case
studies of interpretation.

4.1 Experimental Settings

4.1.1 Dataset. We use Yelp Challenge? Round 13 dataset for ef-
fectiveness and interpretability tests. We divide the reviews by
cities and subsets of “Toronto” and “Phoenix” are used due to larger

Zhttps://www.yelp.com/dataset
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Figure 3: Performance evaluation of GEAPR compared with baseline models.

sizes. Yelp dataset contains comprehensive details of the reviews,
user attributes, user friendships, and POI locations. The friendship
network in the datasets serves as the information source of the
neighbor impact encoder and the structural context encoder of
GEAPR. The adjacency matrix is the input of the neighbor impact
encoder and also helps to create the structural context. Yelp Round
13 dataset does not include the owners of the check-in records. We
instead consider the abundant reviews to be equivalent to check-ins
since intuitively each review corresponds with a past check-in. We
sort all reviews grouped by users chronologically and filter out
users with less than 10 reviews to avoid cold-start. We partition the
review set of each individual into 9:1 where 90% data is used for
training and the 10% rest for testing. Table 2 shows the statistics.

4.1.2 Metrics and Baseline Models. For effectiveness evaluation,
we consider three metrics widely utilized in information retrieval
and recommender systems, including Mean Average Precision at K
(MAP@k), Precision at k (Prec@k), and Recall at k (Recall@k).
For the i-th test sample, given the list of the top k POIs ranked ac-
cording to the predicted scores s; = (si1, Si2, - - -, Sik), and the m POIs
that a particular user checked-in in the test set T; = {t;1,..., tim},
the three metrics are defined as follows where n is the number of
test samples and s; 1 ; denotes the prefix sublist of s; of length j.

Prec@k = 4 X, IR Recall@k = 1 37, ool MaP@k =
Lyn APi(Tisi). and AP(T;.s;) = 1 Z§=1 . All three

[TiNsi1-j|
n J
metrics take values in [0, 1]. Larger values represent better results.

Prec@k and Recall@k measure how good the top-ranked POIs
match with the ground truth and MAP@k signifies if the ground
truth is ranked at higher positions. k is from 10 to 100.

34”: the count of; “%”: the density of; “U-Cxn”: user friendship connections.

Table 2: Statistics of the datasets for evaluation.3

Dataset #.User #.POI #Reviews #U-Cxn %.Reviews %.U-Cxn
Toronto 9582 9102 234388 104402 2.687x1073  1.139x1073
Phoenix 11289 9633 249029 163900  2.290x1073  1.286x1073

Eight baselines are used for performance comparison including
MF, GeoMF, WRMF, LORE, GeoSoCa, PACE, CORALS, and
LCR. They include matrix factorization based models and deep-
learning-based models. We provide brief descriptions for the base-
line models for comparisons with GEAPR*. The parameter settings
follow the default values in the source code or in their original
papers. MF, the Matrix factorization model that decomposes the
user-POI check-in matrix and make predictions by reconstruction.
GeoMF [25], a geolocation-enhanced MF model that considers the
geographical factors as constraints. WRMF [14], Weight regular-
ized MF, incorporates both implicit and explicit check-ins for future
check-in predictions. LORE [51] builds a location-location transi-
tion graph to specifically model the sequential influence of POIs to
user preferences. In GeoSoCa [50], Geolocation, social connections,
and POI categories are all considered to extract diverse information.
PACE [43] is a deep learning-based multi-task learning algorithm
that predicts POI, user context, and spot context simultaneously
for better accuracy and robustness. CORALS [20] incorporates
the modeling of reputation prediction of POIs in location recom-
mendations. LCR [28], Local Collaborative Ranking, assumes that
user-POI matrix is local low-rank rather than global low-rank to
mitigate the data sparsity issue of POI recommendation.

4The implementation of PACE: https://github.com/yangji9181/PACE2017; The imple-
mentation of the rest of baselines: http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17.
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Figure 4: Ablation study of GEAPR compared with its variants.

Some models mentioned in Section 2 are excluded from the
comparison due to a lack of high-quality implementation or instruc-
tions for reproduction. Even so, our experiments are still able to
provide coverage on both traditional methods and deep learning-
based methods. In addition, sequential POI recommendation mod-
els [16, 35, 39, 48, 52, 57] are excluded as well due to different use
cases as discussed earlier in Section 2.

4.1.3  Reproduction. The prototype of GEAPR was implemented by
Python (3.6.8) and TensorFlow (1.14.0) and run with a 16 GB Nvidia
Tesla V100 GPU embedded in a Nvidia DGX-1 server. The code is
publicly available on GitHub’. and a comprehensive end-to-end
instruction on how to run the code is also provided.

The hyper-parameters that generate the results in Section 4 are
listed in Table 3. To prevent overfitting, dropout is employed in the
graph attention network module for structural context modeling
and the attentional factorization machines module for attribute
impact modeling. The dropout rates are also shown in Table 3.

4.2 Effectiveness

This section reports the comparisons of GEAPR and the baselines
for performance analysis, and of GEAPR and its variants for abla-
tion study. A parameter sensitivity study is also provided to cast
light on the heuristics to parameter tuning. Please note that POI rec-
ommendation tries to identify all potential POIs from an enormous
candidate base, which is essentially hard due to the unpredictability
of users’ minds. Users can receive multifaceted stimuli, a great pro-
portion of which are implicit and difficult to capture based merely
on the dataset. As a result, the numeric values of POI recommenda-
tion are relatively small for all state-of-the-art models.

5The source code is available here: https://github.com/zyli93/GEAPR

Table 3: Parameter settings for the experiments.

Parameters ‘ Toronto Phoenix
da, dn, dp, and d {64,64,64,32}
Mong> Mat {30, 30}
R,y,and ¢ {3, 0.05, 0.1}
Loss function Point-wise
Regularization function Ly, ¢ =0.0001
Optimizer Adam
Learning rate 0.001
Hidden layers of SC module 2 layers: {64,48}
Negative sampling (P:N) 1:105 1:90
NI module dropout 0.3 0
AT module dropout 0.3 0.2

4.2.1 Comparison with Baselines. The experimental results on ef-
fectiveness are shown in Figure 3. Point-wise (PO) loss is selected
due to its superior performance and the results by pair-wise loss are
shown in Section 4.2.2. It is demonstrated that GEAPR can achieve
the state-of-the-art result by outperforming MF, GeoMF, WRMF,
LORE, GeoSoCa, PACE, CORALS, and LCR on all three metrics. In
other words, the ground truth of the test samples is effectively iden-
tified at high ranking positions. The advancement of deep learning
has pushed the performance of this task to an extreme such that
numerically small performance increases should also be considered
significant. Therefore, GEAPR has made significant progress on
accurate POI recommendation. As PACE is deep learning-based and
requires larger input data density, its performance slightly drops
under the settings of Table 2. CORALS requires dense review data
for location reputation modeling and hence the density hurts its per-
formance as well. The architecture that maintains interpretability
requires GEAPR to avoid unjustifiable element-wise feature multi-
plication and aggregate information by weighted average pooling.
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Hence some complex or subtle information is missed and the learn-
ing power of GEAPR is undermined. That being said, GEAPR still
achieves great performances.

4.2.2  Ablation Study. Ablation study illustrates in Figure 4 the
contributions of the four factors and the performance difference
of the two ranking losses. “GEAPR-X” refers to the variant that
differs from GEAPR by “X”. X can be “SC” (no structural context),
“NI” (no neighbor impact), “AT” (no user attributes), “GEO” (no
geolocations), or “PA” (uses pair-wise loss). The curve of GEAPR is
higher than other variants in all six subfigures. Four conclusions
are drawn: (1) Attribute information provides performance gain
indicating its usefulness. The reason of the relatively small contri-
bution is the lack of the diversity of attribute information revealing
user interests such as age and gender; (2) Removing the geolocation
causes the largest performance deterioration. Therefore, the geo-
graphical information is the most influential factor as it is closely
related to the POI task. It also shows that accurately mining geo-
graphical information is critical in accurate POI recommendation;
(3) Taking away any factor will hurt the performance meaning that
all three non-geographical factors take effect and contribute uniquely
to the performance increase; (4) Pair-wise loss is not as useful
as point-wise loss. Pair-wise loss relies on an advanced sampling
strategy to sample data that is closer to the “decision hyperplane”
with larger probabilities at the cost of extra computation. Instead,
GEAPR draws negative samples uniformly with the goal of being
generalizable to the diverse possible distributions of the data.

4.2.3  Parameter Sensitivity. We briefly introduce the parameter
sensitivity study of GEAPR. None of the tuned parameters has a
monotonic relationship with the evaluation results. For example,
a greater negative sampling ratio will slow down the training and
overly penalize on the unobserved check-ins so that the ground
truth can also be mistakenly concealed, whereas a smaller ratio
overfits the positive samples but underfits the negative, hurting the
performance in another way. As for embedding size d, assigning d
as 32, 64, or 128 only produces a little performance fluctuation but
making it larger or smaller will deteriorate the recommendation
accuracy. There is no theoretical guarantee on their optimality of
the hyper-parameters used to derive the results in Figure 3. It is
plausible to grid-search for other settings with better performances.

4.3 Interpretability

In this section, we demonstrate the interpretability of GEAPR by
plotting the heat maps of 7 = {7, 7y, 74}, @y, in the graph atten-
tion network module for neighbor impact, f and A in the attribute
influence module denoting the first- and second-order interaction
importance, respectively, and hy for geolocation feature. They are
designed to probe the importance of features and generate inter-
pretation accordingly.

4.3.1  User Motivation Study. We plot three examples on this topic
shown in Figure 5, 6, and 7. The blue bars show the motivation
breakdown s; the green bars show the attributes importance f; the
variable-length dark orange bars show the friends count of a user
and the weights learned from the neighbor impact module (ery,). The
A is not plotted since it is observed that the values in A are almost
identical, showing that the second-order features are orthogonal to
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Figure 5: Example with significant neighbor impact. User
neighbor ID are omitted for better visualization.
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Figure 6: Example with significant structural context.
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Figure 7: Example with significant user attribute.

the formation of user motivation. This fact is consistent with our
perception since features provided by the dataset are mostly counts
or scores (e.g., review counts, funny score, cool score, etc.) and are
independent of each other by intuition.

Figure 5 shows an example with important neighbor feature since
its weight is the largest in the blue heat map. From the 19 neighbors
of the user, only one user has a huge impact on causing the user’s
motivation. The single peak of the user neighbor impact boosts of
direct neighbor importance and decreases of the context importance.
And the strong neighbor and context combined depress the weight
of attribute since all weights add up to 1.

Figure 6 shows an example with important structural context
features. The actual structural context is hard to depict since it
is a dense vector with dimension size identical to the number of
users. But we can still observe that the friends of this user are
contributing more evenly impacts compared with Figure 5. That is,
the user’s visit preference is actually influenced by many neighbors
and potentially the further neighbors, i.e., the users in the same
structural context or community.

Figure 7 exemplify a case with both important attribute infor-
mation and important neighbor impact. The lack of friendship con-
nections (only 5 friends) and the single-peaked neighbor impact
push the model to learn motivation from attributes. Therefore a
heavyweight is put on YelpYrs that stands for the number of years
the user had been on Yelp. It turns out that the user’s “Yelping
years” is 8 years, a time long enough to form a user’s visiting habits.
From the figures, we notice a common property of attribute weights
(green bars) that #.Elite and YelpYrs are usually highlighted as
opposed to other user attributes. #.Elite denotes how many times
the user had been awarded as “Yelp elite”. We suppose that these
two features have tight bonds with user activity and are understood
by the model as a signal of a generally stronger motivation.

In addition, we acknowledge the insufficiency of attribute infor-
mation of the Yelp dataset even though other POI datasets do not
provide attributes at all. Without informative features, the models



User Geographical Preference POI Geolocation Influence

Figure 8: User geographical preference v.s. single POI influ-
ence distribution
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Figure 9: User geographical preference v.s. sum of POI influ-
ence distribution

can not produce convincing rationale but complex statistical signals
from the data.

4.3.2  Geolocation Preference. As shown in Eq. (5), the geographical
correlation with user and POI is modeled by a linear dot-product.
That is, a greater preference value represents a stronger inclination
to that zone. We exemplify the results by showing the learned
user preference against (1) the predefined influence distribution
of a single visited POI and (2) the normalized summation of the
influence distributions of all visited POIs in Figure 8 and Figure 9.
Each figure contains 30 X 30 grids each representing a grid in the
real-world map of POIs.

In Figure 8, we observe that the user preference values concen-
trate at the bottom right corner which agrees with the influential
center of the POL In addition, the top left corner is not favored by
the user and the POI influence figure also shows the same pattern
of low influence. In Figure 9, the heat zones are generally aligned
between the two figures. The upper halves of both user preference
and POI influence are heated and the bottom parts are relatively
inactive. This demonstrates that GEAPR is capable of capturing the
geographical preference of a user and understand which parts the
more favored than other parts.

5 INTERFACE OF DEPLOYED GEAPR

We showcase an example interface of a POI recommender system
under test in Figure 10 that uses GEAPR as the recommendation
engine. We take a screenshot and redact a number of sensitive fields
such as the user name and the profile images of related friends.
We run a recommendation query and three results are returned
with different rationales behind the recommendations. Specifically,
the first recommendation result is mined from structural context
since the user has a big group of similar users within his or her
close social community that have visited this place. For the second
recommendation, the user has three direct friends who have visited
this POI and rated highly of it. Our model also ranks them based on
their numerical contributions to the overall neighbor impact. For
the third recommendation, both structural context and attribute
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Figure 10: An interface of the explainable recommendations.
This image is edited to avoid privacy leakage. The fields of
Factor Importance Distribution show the significantly influ-
ential factors such as “SC” for the first recommended POI,
“NI” for the second, and “SC”+“AT” for the third. Output of
the four factors is presented underneath the POI name to ex-
plain the recommendations including distances (geographi-
cal factor), structural context factor, neighborhood impact,
and attribute factor. The insignificant factors are collapsed
in the presentation.

information take effect. Specially, attribute factor encoder suggests
that users with a big YelpYrs and a large number of Elite tend to
visit this POL Therefore, the user will be notified which attributes
motivate the recommendations.

Although the system is still under test, we can draw a conclusion
that GEAPR is effective for POI recommendation. Both users using
the POI recommendation service and the service provide will benefit
from the superior accuracy and good interpretability of GEAPR.

6 CONCLUSION

In this paper, we propose GEAPR, a graph-enhanced POI recom-
mendation algorithm that incorporates user friendship network
information in addition to user attributes and geolocation features.
Specifically, GEAPR decomposes the motivation of user check-ins
into four different aspects: social structural context, neighborhood
impact, user attribute, and geolocation, and quantifies the impor-
tance of each feature. In addition, GEAPR employs the attention
mechanism to generate interpretations that reveal the salient mo-
tivating factors, influential neighbors, informative attribute inter-
actions, and heated geographical areas, etc. Experimental results
demonstrate the effectiveness and interpretability of GEAPR.

We list the following potential improvements as future work: (1)
It may be helpful to also build a POI graph by semantics and apply
graph mining algorithms; (2) A better way to preserve non-linear
geolocational features is needed to learn complex information.
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