

Powering Comparative Classification with Sentiment Analysis via Domain Adaptive Knowledge Transfer

Zeyu Li, Yilong Qin*, Zihan Liu*, and Wei Wang Department of Computer Science University of California, Los Angeles Paper ID: 1731

Comparative Preference Classification

WHAT IS CPC?

- Whether a preference comparison exists between two entities in a sentence?
- For example:
 - Sentence: *Python* is better suited for data analysis than *MATLAB* due to the many available deep learning libraries.
 - Entities:
 - Entity A: Python; Entity B: MATLAB
 - Prefer "python" to "MATLAB"?
 - "Better", "Worse", "None"

Why useful?

USE CASES

- Identity a comparison:
 - In a piece of shopping review comparing two items
 - In a news article or a wiki page for relation extraction
 - On social media posts
- With the comparisons:
 - Build product graph for better recommender system
 - Understand users' preferences towards items
 - Extract comparative facts
 - And more

Existing works and Challenges

- Existing works:
 - Some model CPC as a sentence classification task without highlighting the two entities.
 - ED-GAT [MMWL'20]:
 - Purely dependency parsing-based, semantics deprived.
- Dataset:
 - CompSent-19 [PBFHB'19]
 - 7.2K sentences in total
- For a better solution:
 - Semantics
 - More training data as training knowledge

Intuition of Design

SEMANTICS

Add a semantics module to understand the entire sentences.

INCORPORATING MORE KNOWLEDGE

- Aspect-based Sentiment Analysis (ABSA)
 - Goal: identifying the fine-grained opinion polarity towards a specific aspect associated with a given target.
 - E.g.: "I liked the service and the staff, but not the food".
 - Aspects: service, staff, food
 - Sentiments: positive, positive, negative
- How about incorporating ABSA to CPC?
 - The preferred entity usually receives a positive sentiment while its rival gets a relatively negative one

Intuition of Design

SEMANTICS

Add a semantics module to understand the entire sentences.

INCORPORATING MORE KNOWLEDGE

- Aspect-based Sentiment Analysis (ABSA)
- How about incorporating ABSA to CPC?
- How to incorporate?
 - Incorporate a trained sentiment analyzer
 - Incorporate the architecture only with untrained parameters and jointly optimize them with the CPC task

Intuition of Design

SEMANTICS

Add a semantics module to understand the entire sentences.

INCORPORATING MORE KNOWLEDGE

- Aspect-based Sentiment Analysis (ABSA)
- How about incorporating ABSA to CPC?
- How to incorporate?
 - Incorporate a trained sentiment analyzer → Domain shift
 - Incorporate the architecture only with untrained parameters and jointly optimize them with the CPC task → "Closeable" domain shift

SAECON – Overall Arch

SENTIMENT ANALYSIS ENHANCED COMPARATIVE CLASSIFICATION NETWORK

- Different route for CPC and ABSA
- Forward pass for CPC input (in the green shade)

CPC TASK

1. Global Semantic Context
$$\overrightarrow{m{h}_{g,i}}, \overleftarrow{m{h}_{g,i}} = \mathrm{BiLSTM}(\mathbf{S}_0)[e_i.\mathrm{index}], \quad i=1,2$$

$$\begin{subarray}{c} m{h}_{g,i} = \frac{1}{2} \left(\overrightarrow{m{h}_{g,i}} + \overleftarrow{m{h}_{g,i}} \right), m{h}_{g,i} \in \mathbb{R}^{d_g}. \end{subarray}$$

CPC TASK

1. Global Semantic Context $\overrightarrow{m{h}_{g,i}}, \overleftarrow{m{h}_{g,i}} = \mathrm{BiLSTM}(\mathbf{S}_0)[e_i.\mathrm{index}], \quad i=1,2$ $m{h}_{g,i} = \frac{1}{2} \left(\overrightarrow{m{h}_{g,i}} + \overleftarrow{m{h}_{g,i}} \right), m{h}_{g,i} \in \mathbb{R}^{d_g}.$

2. Local Syntactic Context (Syntactic GCN [MT'17])

$$g_{uv}^{(j)} = \sigma \left(\boldsymbol{h}_{u}^{(j)} \cdot \boldsymbol{\beta}_{\underline{d_{uv}}}^{(j)} + \gamma_{\underline{l_{uv}}}^{(j)} \right), \quad g_{uv}^{(j)} \in \mathbb{R},$$
 Direction and label of (u,v)
$$\boldsymbol{h}_{v}^{(j+1)} = \rho \left(\sum_{u \in \mathcal{N}(v)} g_{uv}^{(j)} \left(\mathbf{W}_{d_{uv}}^{(j)} \boldsymbol{h}_{u}^{(j)} + \boldsymbol{b}_{l_{uv}}^{(j)} \right) \right)$$
 Aggregation function (e.g. sum/mean/etc)

CPC TASK

1. Global Semantic Context $\overrightarrow{\boldsymbol{h}_{g,i}}, \overleftarrow{\boldsymbol{h}_{g,i}} = \operatorname{BiLSTM}(\mathbf{S}_0)[e_i.\operatorname{index}], \quad i=1,2$ $\boldsymbol{h}_{g,i} = \frac{1}{2} \left(\overrightarrow{\boldsymbol{h}_{g,i}} + \overleftarrow{\boldsymbol{h}_{g,i}} \right), \boldsymbol{h}_{g,i} \in \mathbb{R}^{d_g}.$

2. Local Syntactic Context (Syntactic GCN [MT'17])

$$g_{uv}^{(j)} = \sigma \left(\boldsymbol{h}_{u}^{(j)} \cdot \boldsymbol{\beta}_{\underline{d_{uv}}}^{(j)} + \gamma_{\underline{l_{uv}}}^{(j)} \right), \quad g_{uv}^{(j)} \in \mathbb{R},$$
 Direction and label of (u,v)
$$\boldsymbol{h}_{v}^{(j+1)} = \rho \left(\sum_{u \in \mathcal{N}(v)} g_{uv}^{(j)} \left(\mathbf{W}_{d_{uv}}^{(j)} \boldsymbol{h}_{u}^{(j)} + \boldsymbol{b}_{l_{uv}}^{(j)} \right) \right)$$
 Aggregation function (e.g. sum/mean/etc)

3. Sentiment Analyzing representation for each entity

$$\mathcal{A}(\mathbf{S}_0,G_s,E) = egin{cases} oldsymbol{h}_{s,1},oldsymbol{h}_{s,2} & ext{if } s \in D_c, & ext{For CPC task/input, with CPC labels} \\ oldsymbol{h}_s & ext{if } s \in D_s. & ext{For ABSA task/input, with ABSA labels} \end{cases}$$

- Different route for CPC and ABSA
- Forward pass for ABSA input (in the blue shade)

- Different route for CPC and ABSA
- For both types of input, we train the domain classification layer

SENTIMENT ANALYSIS

Sentiment analyzer output different representations for different task

$$\mathcal{A}(\mathbf{S}_0,G_s,E) = egin{cases} m{h}_{s,1},m{h}_{s,2} & ext{if } s \in D_c, & ext{For CPC task/input, with CPC labels} \ m{h}_s & ext{if } s \in D_s. & ext{For ABSA task/input, with ABSA labels} \end{cases}$$

DOMAIN SHIFT VIA GRADIENT REVERSAL LAYER (GRL)

$$\frac{\partial \mathsf{GRL}_{\alpha}}{\partial \boldsymbol{x}} = -\alpha \mathbf{I}.$$

OBJECTIVE AND OPTIMIZATION

$$\hat{y}_c = \delta(\mathcal{F}_c([\mathcal{F}(\boldsymbol{h}_{e_1}); \mathcal{F}(\boldsymbol{h}_{e_2})]))$$
 (CPC only),
 $\hat{y}_s = \delta(\mathcal{F}_s(\boldsymbol{h}_s))$ (ABSA only), Binary/Multiclass classifications
 $\hat{y}_d = \delta(\mathcal{F}_d(\text{GRL}(\mathcal{A}(\mathbf{S}_0, G_s, E))))$ (Both tasks),

Experiments – Setup

COMPSENT-19

- 1. Statistics
- 2. Imbalanced Data
 - 1. Flipping labels
 - 2. Upsampling
 - 3. Weighted loss
- 3. Evaluation Metric
 - 1. F1 score of each label (B, W, N)
 - 2. Micro-averaging F1

Dataset	Better	Worse	None	Total
Train	872 (19%)	379 (8%)	3,355 (73%)	4,606
Development	219 (19%)	95 (8%)	839 (73%)	1,153
Test	273 (19%)	119 (8%)	1,048 (73%)	1,440
Total	1,346 (19%)	593 (8%)	5,242 (73%)	7,199
Flipping labels	1,251 (21%)	1,251 (21%)	3,355 (58%)	5,857
Upsampling	3,355 (33%)	3,355 (33%)	3,355 (33%)	10,065
	707			

Experiments – Performance

COMPARING WITH BASELINES & ABLATION STUDY

Model	Micro.	F1(B)	F1(W)	F1(N)
Majority	68.95	0.0	0.0	81.62
SE-Lin	79.31	62.71	37.61	88.42
SE-XGB	85.00	<u>75.00</u>	43.00	92.00
SVM-Tree	68.12	53.35	13.90	78.13
BERT-CLS	83.12	69.62	50.37	89.84
AvgWE-G	76.32	48.28	20.12	86.34
AvgWE-B	77.64	53.94	26.88	87.47
ED-GAT-G	82.73	70.23	43.30	89.84
ED-GAT-B	<u>85.42</u>	71.65	47.29	<u>92.34</u>
SAECON-G	83.78	71.06	45.90	91.05
SAECON-B	86.74	77.10	54.08	92.64

Variants	Micro.	F1(B)	F1(W)	F1(N)
SAECON	86.74	77.10	54.08	92.64
-BiLSTM	85.21	72.94	43.86	92.63
-SGCN	86.53	76.22	51.38	92.24
-GRL	and the second second		49.77	
$-(\mathcal{A}+GRL)$	85.97	74.82	52.44	92.45

Experiments – Analyses

DATA IMBALANCE AND ALTERNATIVE TRAINING

Data Imbalance

Methods	Micro.	F1(B)	F1(W)	F1(N)
Weighted loss (WL)	86.74	77.10	54.08	92.64
Original (OR)	85.97	73.80	46.15	92.90
Flipping labels (FL)				
Upsampling (UP)	85.83	73.11	46.36	92.95

Alternative Training

Experiments – Case Study

Label	Δ
Better	
	-1
None	0
None	0
	Better Worse None

Supplementary CPC sentences with sentiment predictions by ${\cal A}$		
S1: [Ruby:NEU] wasn't designed to "exemplify best practices", it was to be a better [Perl:NEG].		
S2: And from my experience the ticks are much worse in [Mid Missouri:NEG] than they are in [South Georgia:POS] which is much warmer year round.		
S3: As an industry rule, [hockey:NEG] and [basketball:NEG] sell comparatively poorly everywhere.		0
S4: [Milk:NEG], [juice:NEG] and soda make it ten times worse.		

Thanks!

Code on GitHub: https://github.com/zyli93/SAECON

Paper ID: 1731

Looking forward to seeing you in the **POSTER** session!

